
SOFTWARE PATENTING AND

SECTION 101’S GATEKEEPING FUNCTION

Andrew Chin*

[DRAFT — 7/26/2019]

INTRODUCTION

Software-related inventions have had an uneasy relationship with the

patent-eligible subject matter requirement of Section 101 of the Patent

Act.1 In applying the requirement, the Supreme Court has historically

characterized mathematical algorithms and formulas simpliciter as

sufficiently analogous to laws of nature to warrant judicial exclusion as

abstract ideas.2 The Court has also found “the mere recitation of a generic

computer” in a patent claim as tantamount to “adding the words ‘apply it

with a computer,’” a mere drafting effort that does not relieve “the pre-

emption concern that undergirds our § 101 jurisprudence.”3 Lower courts,

patent counsel and commentators have struggled to apply these broad

principles to specific software-related inventions, a difficulty largely

rooted in the many forms and levels of abstraction in which mathematical

algorithms can be situated, both in the computing context and in the terms

of a patent claim.4 Consequently, widely varying approaches to claiming

inventions that involve algorithms in their use have perennially

complicated efforts to develop a coherent doctrine of unpatentable abstract

ideas.

* Paul B. Eaton Distinguished Professor of Law, University of North Carolina; J.D.,

Yale Law School; D.Phil. (Mathematics), University of Oxford.
1 See 35 U.S.C. § 101 (“Whoever invents or discovers any new and useful process,

machine, manufacture, or composition of matter, or any new and useful improvement

thereof, may obtain a patent therefor, subject to the conditions and requirements of this

title.”).
2 See Parker v. Flook, 437 U.S. 584, 590 (1978) (citing Gottschalk v. Benson, 409

U.S. 409 U.S. 63, 67 (1972)) (“Reasoning that an algorithm, or mathematical formula, is

like a law of nature, Benson applied the established rule that a law of nature cannot be the

subject of a patent.”).
3 See Alice Corp. v. CLS Bank Int’l, 134 S.Ct. 2358 (2014) (citing Mayo Collab.

Svcs. v. Prometheus Labs., 132 S.Ct. 1289, 1294-1301 (2012)).
4 See, e.g., Jeffrey A. Lefstin, The Three Faces of Prometheus: A Post-Alice

Jurisprudence of Abstractions, 16 N.C. J. L. & TECH. 688 (2015) (“The pivotal question

… perhaps for software patents more generally, is whether specific information-

processing techniques are abstract ideas.”); see generally JAMES BESSEN & MICHAEL J.

MEURER, PATENT FAILURE: HOW JUDGES, BUREAUCRATS AND LAWYERS PUT

INNOVATORS AT RISK 201 (2008) (arguing that “the abstractness of software technology

inherently makes it more difficult to place limits on abstract claims in software patents”).

2 SOFTWARE PATENTING

In the computing context, the term “algorithm” can refer to any “finite

sequence of steps” that accomplishes a given task.5 As an algorithm is

usually described in the computer science literature, it is common for

some or all of the “steps” themselves to be tasks that can be decomposed

further into sequences of more basic steps. A computer system thereby

typically involves numerous “abstraction layers,” with each successive,

more abstract, layer implementing its own set of functions through various

algorithms comprising sequences of functions previously implemented by

the more concrete layers below.6 To make matters even more complicated,

abstraction layers often provide multiple distinct implementations and

interpretations of a single function, using a versatile programming

technique known as “indirection.”7 For example, the FreeBSD operating

system uses indirection to implement a single “read system call” operation

on disparate filesystem organizations such as those in PC hard drives, CD-

ROMs, and USB sticks.8

As of this writing, the Senate Judiciary Subcommittee on Courts,

Intellectual Property and the Internet is considering draft legislation to

overhaul existing law relating to patent-eligible subject matter, inter alia,

by specifying that (1) “the provisions of section 101 shall be construed in

favor of eligibility,” (2) “no implicit or other judicially created exceptions

to subject matter eligibility … shall be used to determine patent eligibility

under section 101, and all cases establishing or interpreting those

exceptions to eligibility are hereby abrogated,” and (3) “eligibility …

under section 101 shall be determined without regard to … any other

considerations relating to sections 102, 103, or 112.”9 According to the

bill’s drafters, the new statute codifies the principle that “statutory

5 See MICROSOFT COMPUTER DICTIONARY 19 (1999) (defining “algorithm” as “[a]

finite sequence of steps for solving a logical or mathematical problem or performing a

task”).
6 See ANDREW S. TANENBAUM, STRUCTURED COMPUTER ORGANIZATION (1979).
7 See Diomidis Spinellis, Another Level of Indirection, in BEAUTIFUL CODE:

LEADING PROGRAMMERS EXPLAIN HOW THEY THINK 279–291 (Andy Oram & Greg

Wilson, eds. 2007). Indirection is such a versatile approach to abstracting away

implementation details that the claim that “[a]ll problems in computer science can be

solved with another layer of indirection” has become a well-known aphorism among

programmers. See id. at 279.
8 See id. at 279-82.
9 See Thom Tillis, Sens. Tillis and Coons and Reps. Collins, Johnson, and Stivers

Release Draft Bill Text to Reform Section 101 of the Patent Act, Press Release (May 22,

2019), https://www.tillis.senate.gov/2019/5/sens-tillis-and-coons-and-reps-collins-

johnson-and-stivers-release-draft-bill-text-to-reform-section-101-of-the-patent-act

(hereinafter “Draft Bill Text”).

 SOFTWARE PATENTING 3

exceptions should be the only basis for excluding inventions from

eligibility and courts may not expand them.”10 The text of the proposed

statute, however, simply recites the already existing categories of statutory

subject matter (process, machine, manufacture, composition of matter,

improvement) without any mention of exceptions while specifying that

patentable utility requires “specific and practical utility in any field of

technology through human intervention.”11

As the judicially created exceptions from patent-eligible subject matter

hang in the balance, it is a critical time to examine the form and function

of the courts’ patent-eligibility jurisprudence to date, particularly in the

software field. This chapter identifies and reviews three conceptually

divergent judicial approaches to the patent-eligibilty of software-related

inventions.

Part I of this chapter examines courts’ efforts in past decades to

ground the eligibility of some software-related inventions in the statutory

category of “new and useful … machine[s].”12 This approach was

problematic insofar as it tended to obscure considerations of the

underlying mathematical algorithm in other aspects of the patentability

analysis. The proposed legislation would likely send courts down this road

again, in that software-related inventions would fall under the “process”

and “machine” statutory categories, with a general-purpose computer

programmed to perform any practical function being eligible as a

“machine.”

Part II describes and critiques the current framing of preemption as the

central concern necessitating the judicial exclusion of certain software-

related inventions. This preemption concern neither accurately captures

the rationale for judicial exclusion nor provides adequate guidance

regarding the eligibility of software-related claims.

Part III highlights the judicial exclusions’ historic and enduring role in

obviating other patentability inquiries that would be inapposite as applied

to the claimed subject matter. This gatekeeping function represents an

independently sufficient, jurisprudential, rationale for the patent-eligible

subject matter requirement and provides a precise criterion by which

examiners and courts can distinguish between abstract ideas and their

practical applications in the field of computing.

10 See Thom Tillis, Tillis, Coons Vet Patent Eligibility Bill Principles with

Stakeholders, Press Release (Mar. 27, 2019), https://www.tillis.senate.gov/2019/3/tillis-

coons-vet-patent-eligibility-bill-principles-with-stakeholders.
11 See Tillis, Draft Bill Text, supra note 9.
12 See 35 U.S.C. § 101.

